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FOREWORD

This report is submitted as part of Contract AF 33(038) 21406,

which was initiated by the Office of Air Research. Work under this

contract was begun at the Graduate School of Aeronautical Engineering

at Cornell University in March 1951. The report is one of a series to

be published as the result of the work carried out under this contract.

The project is being directed by Professors Nicholas Rott and

W. Re Sears, and the constant assistance of Professor Sears on this in-

vestigation is especially acknowledged. The investigation was suggested

to the author by Professor Arthur Kantrowitz, whose interest in Mach

reflection originated in his researches on "Propagation of Expansion and

Compression Waves," which are partially supported by the U.S. Office of

Naval Research.

Mr. L. S. Wasserman of the FlightResearch Laboratory, Wright Air

Development Center, wrs the project engineer of this report, authorized

by Research and Development Order No. 465-5-6, Practical Problems in

Aerodynamics.
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ABSTRACT

The configuration of non-stationary Mach reflection has a

conical similarity in time-space, since there is no fundamental time

or space interval involved. This property is easily shown (Part Ib),

and can be used to simplify the determination of various disturbance

qu antities.

For this type of reflection the strength of the reflected shock

depends on that of the incident shock and also on the deflection angle.

To the first approximation, this reflected wave is a sonic front. Thus,

the resulting boundary-value problem in linearized theory is relatively
1,2,3

simple, and has been attacked by several investigators $ The ex-

tension to second-order theory is discussed (Part Id) but is not carried

out in detail.

Based on the results obtained from linear theory, it is shown

how the shock strength can actually be determined to the second order

(Part II). The strength of this reflected shock is found to be of

second order, and it vanishes at the triple point.

PUBTICATiON PREVIEW

The publication of this report does not constitute approval

by the Air Force of the findings or the conclusions contained therein.

It is published only for the exchange and stimulation of ideas.

FOR THE COMANDING GENERAL:

LEL BoII LLI , 7olone i, USAF

, iefFlight Research Laboratory
Research Division
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I. Mach Reflection

(a) General Consideration

Let us consider a plane shock 1 propagating into still air

with a constant velocity q in the positive X direction; the air

behind the shock has a uniform velocity V," * Let us further denote

the flow region ahead of the shock by 0 , and that behind by / .

With respect to a frame attached to shock I , this is a

stationary flow field. The strength of shock I is measured by the

pressure ratio 3 , or by the Mach number in flow /

referred to frame L , i.e., U- =

Since -• -
2- _ _ C ',i- z. cr-C-t ai-) to••"

-= 0(- j-) 4,,,0-

two immediate conclusions can be drawn.

i) Since• ; i, i.e., 0-'I , with respect to flow in / , shock

I always propagates with subsonic speed, so that any disturbance in /

catches up with the shock. Thus when the shock hits a wall corner, the

appearance of Mach reflection is natural unles- the turning angle J be

so large that the so-called "regular reflection" occurs.
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ii) The Mach number of flow / is given by

Thus the flow behind shock is supersonic (Af,>J) when

<- #/ ( "/%: - 1ý.q)-9 44

N2. %=

or 3-

and subsonic C A4, <t ) when oe-> 0.-r4 6  ,or Jr <

When such a propagating plane shock hits a corner, the con-

figuration of resulting Mach reflection can be stated as follows:

There is a triple point T ; part P-/-of shock Z remains straight,

being unaffected by the signal from corner A ; part 71 is curved, due

to effect of deflection by A ; Tp is the reflected wave signaling

the presence of A (in the first approximation, the entire front is

sonic in subsonic case, while only part -; is sonic in supersonic

case); and a slip stream -5 appears, across which entropy and

density (but not pressure) are discontinuous. (Fig. 1, 2). The whole

region io propagates to the right with velocity V, and at the

same time expands radially about origin 0 with speed of sound a,

Inside region e, the flow is non-steady. However, by a proper

transformation of coordinates it can be shown that there exists a

conical property, with o as apex, and time t- as axis of the cone,

so that the problem can be reduced to a two dimensionalsteady one.

The flow will then be signified by two parameters in its conical plane:

strength of the incident shock, and angle of wall corner.
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A 0 A0

(j) subsonic (ii) supersonic

An exact solution to the problem is mathematically not

practical, so a linear solution is first sought. This has been done

by different 4uthors under different assumptions.

If 4 is very small, reflected wave is weak. Vorticity Jf.

above the slipstream can be neglected (indeed, JZ- < OC93)). However,

unless incident shock is also weak, vorticity in region D I T is by

no means negligible. (i)
By assuming a weak shock and small corner angle, Bargmann

investigated the disturbance-velocity distribution in the whole

region -o by introducing a velocity potential. This, however,

necessitates an assumption that the shock be so weak that the

existence of the slip stream and the region of rotational flow can
(2)

be neglected. Later, not assuming weak shock, Lighthill showed

that the disturbance pressure /I in whole region - satisfies one

single conical equation in spite of the presence of the slip stream

and the rotational flow, and so he calculated the pressure distribution

(3)
along both the wall and Mach shock. Recently, Ludloff , using the

Lorentz transformation, determined both pressure and density fiea-l

in e. . His analysis showed the slip stream lies along the radial

line o-7 , as expected, flow in region 0 7-O being rotational, while

that in region P P irrotatior:al.
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Utilizing the results of previous authors, it should be possible

to determine the disturbance velocity'u , it in region 0 7"P, taking

into consideration the slip stream, so that the incidient shock need

not be weak, althcugch the deflection angle would still be assumed

small. This solution should prove an inmmediate improvement over

Barpmannt s.

Although re allow the shock strength to be not small, we shall

in the present report still limit it so that the flow behind the shock

is subsonic; the case where the after-flow is sulpersonic will be. left•

to further investigation.

Essentially, the procedure follc.ed will consist in taking the

uniform flow behind the straight shock as our basic flow, and de-

flection angle A as a perturbation. Thus all the perturbing quantities

will be expressed in orders of 49 . Based on the results of the

present investigation, further approximations can be carried out using

a technique suggested by Lirihthill.

(b) Conical Similarity

Designate the uniform flov. field behind the propagating

straight shock by / , the disturbed flow behind the curved I.ch shock

and inside the reflected front R by 2 • Let velocity, pressure,

density and entropy be denoted by 2., p., '. - ( ,

and the correspond-i, non-dimensional perturbed quantities by (u, y), 10,4 _,

so that

WADO M 52-163 4



102 = pe' +') P,

Then referred to the fixed coordinate system with corner as origin.,

the equation of continuity, equations of motion, and equation of

energy (isentropy along flow line) take on the following forms

•,, ... ,• , - = (1)-a/* a, P,(P

g'- a' -f 1a 0
++ -, O.Z

~~~~4 +-0 .,.J #" f

On introducing the transformation

W &-•7 (2)

re are referring the flow to a new reference frame which has its origin

at o and moves together ilth flow, and we are contracting the whole

flow field by a scale 4,e . This means that, at any instant, the

sonic front that originated from 0 in the physical plane

reduces to the unit circle in the transformed plane:

" = (4)

If by this transformation we can eliminate the time dependence, then

our problem simplifies to a two-dimensional steady one. That is, the

non-steady motion will have a conical property in space-time; the apex

of the cone being at a , the axes of the cone being the time ordinate,

normal to the plane of the motion.
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Now since a ' --

j t V e- it)- -V X ~
we have, on introducing the transformation, the following system of

eqiations of continuity, motion and energy

JO P (5)
D -a a ,-

/D "-.
3 14 -a

where[..• (, .-.•_ ,

The form of the system of equations clearly shows that the motion is

indeed conical in time-space.

Using vector notation t- 4&i, L-), r= -. , these take

the form (I_ - A,4,.7 V. •7 -- , >

fs - ', ) .VfP' ("-, , t- /) v- -7,C_; - ,Al, # V/, - , , t7-

(v7 refers to _? plane hereafter)

(c) Linearization

Let us suppose that all the perturbation quantities and their

derivatives are small, i.e.

WADC flT 52-163 6



Then we have

or V
v-ao

or • 7t -")

-v + -V (7')

In conformity with the approximation, it may be noted that the

reflected front Pr coincides with the sonic front, i.e., r= I , and

slip stream 57- coincides with radial line 6 Coi' I4,- -,) .

By eliminating the undesired variables, it is easily obtained.

i) Pressure perturbation

IV . X. VF7+I V. (-"-) ! VP)

i.e. 8)
VP rj-r 'f /) Cr.. 5 - )

Thus even when vorticity is present, P satisfies a differential

equation which is well known from usual steady conical flow problem. The

problem is immediately solved by introducing the Chaplygin transformation,

with boundary values determined by consideratioh of Rankine-Huponiot

conditions. Accordingly we have

W5 70 (9)
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where
(10)

is the ChaplyRin transformation. This Is the approach bIy which
(2)

Lighthill. calculated the ýIressurcdistributio:n.

(ii) Density perturbation, since

so in a region where there is no vorticity, it is iirr:cdiately obtained

that j = , .How0ever, it should be noted here that C0 is now

divided into two separate regiclis by the slip stream, and this nice

simple relation holds only in region 0TP. For region 0-7-4? P hab

different bcurdax condition than P and the solution will accordingly
(3)

be different. This fact is clearly born out by Ludloff's calcuhation.

(iii) Velocity perturbation

or.X r. v!7 Z: V. r"x , 17= 7Xor

4cr. V-,)+/( e VX ? ) -=0

Br elimination, it is easily obtained that

(ir. V 4-J) . v,)r, v) - V ] V -7 (12)

Now=a

gives PC&

So cn introducing Chaplygin trar-sformation (10) we obtain in general

7 , 0(49) ( 3

i.e., L 4 satisfies a Poisson differential equation.

WADC TIR 52-163 8



However, if the flow is irrotational, elimination again results

in equation (9).

v,7 2 -- 1t7-.-,) _" , (13,)

or

Thus, if we confine our attention to the vorticity free

region 0 -r P , it is seen that the problem simplifies to solving the

equation (13') subject tofollowing boundary conditions:

i) along wall op, " ,ii) over P- ,ie.,

u - ; and iii) on or , normal velocity

component vanishes since this is a slipstream.

(d) Higher Approximations

From above, it is clear that with boundary conditions properly

determined, all first order quantities L4 ,9 V3y, p10 can be calculated.

Now suppose these have been found. A second approximation can be readily

carried out in following manner:

P ut t i n g OD. J +

(l1•)

where - denotes any of &4 u-9, p, 9 ,and collecting the second

order terms in eqs. (6), we obtain
_ v. ,,p•J O -" "r44, 7" Iv. "- #,,.

(1W.) (I.) C/ 1).)V $
S. 9 V~ v7 P Ir CF

(25

W.ADC TR 52-163 9



Thus the equation for the second-order term in becomes

=•"• CrI÷ ) (r)-f')

(16)

or CA-) ' ,.

The corresponding boundary conditions over the wall can be ob-

tained by standard procedure, those along Mach and reflected shocks

should be obtained by first determining the second order values on the

original boundary using Lighthillts technique. Thus the vwork involved

in a second order solution will in general be prohibitive, and accordingly

not attempted. Only the shock strength of reflected wave, which is of

physical interest, is investigated in next part of this report.
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II Strength of Reflected Shock

Since for small wall deflection angle ' the flow behind

straight shock and slip stream is irrotational,* we are justified

to introduce a velocity potential , which, on account of the

conical property shown before, further reduces to the form

where we have put 4, qt

Now denoting partial derivatives by subscripts, the radial and

tangential velocity components a tt can be written
"L -i *. = 11; O

and since

So we have

i) • ,#+

e. 
.1.a- .. 2 . :r-, J.< is -I-r V' -- ,•/,'

j ' '.,7 V, ) C :F 1 " ,,,0-- 1 ,• =4-fe

* J ::5 0 (J 3J Bargmann, p. 16
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as

- +

i.e. - ':--e%-.C- ,--

Eliminating i, from i) and Ai)

A - ] r r i- '. f--

+ rlrr,+ "ro - -

So
, - -+4 A- .. (D<' LI r- - " e.. e-,+-

(h4)

Referring to coordinates fixed with respect to shock, the Rankine-

Hugoniot ccndition can be written

= continuous (5)

A , TR 52-163 ( 12
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where 3 )and • ''• denote velocity componerts tangential and

normal to the shock respectively, and zC) denotes the increase of a

quantity across the shock front*

Now since [ exists, and flow is steady in the (r 8) plane,

let the reflected shock front be r = (7 () , then

lit) - /,a (),-- )

"'~ (71+ 7) '

i) gives + ÷ 7'(6)(€-'-)J-o

ii) r) - - "

Therefore we have

,, 4,.=___.= [q -- _.1f1*r '

le f0 )- - ,-,
- �f ,t r - I> - r (6)

Since /, 0 on R=1 and 7  .

in linear theory.

WADO TR 52-163 13



But f-_ J, r- - (÷ -,/,

7 (7)

So mR ,4, (6 )f77

(8)
(4)

Following Lighthill by putting

R 09)(4)r- =/ t r, e) -, j= *, a) + a.--.,

in (4) and condition on - , that the linear coefficients in

(4) must vanish; and noting that although since

- R --- -- - r't),-)

terms 14- and /as may prodice terms in /f• , they are however

all not of dimension 1; we have

on •=

(10)
i.e. r.(f) E 0

Now

So

0

""2.r T) 521A 6(3)

WADO ThR 52-163 14



The shock condition at 1 - 6'O) are: Since /- 0

ahead of shock, so directly behind it

-C -r , (12)

Shock cones in range R<, 1 7

so i-, of dimension 2, 7? - ?u.t t, 0.-.?

In condition /=0 on r=- 7(6) , terms A., /' ,...can be

expanded by Taylor expansion (at R = 1) using 9 + , P {• -.- ,(?3 -)j-) to

Terms of dimension 1 and 2 give

2. A (16)

To express the second condition of (I), 4 is needed when

The largest terms here are of dimension 2, and these come from

A4,' 10)J7Z~ and from (7r;),.

so they are

by (12) and (13)

IL 76()(16)

Patting 7& = t,"0'(9) , this becomes

A te.) I L'A 6) - Kz) = 2 KC'0 - A-(6) (15)

WADC TR 52-163 15



The solution of (15) gives

K(O) A ( &-A)>
(16)

-- 0 A• 09 0

For the case of compression, A() Ž. , the shock is thus

located at

(17)

Now the pressure change across the shock is
st• = ,_,>-f) '4-') ..

10 :Y % , f. - a) -. v 7. + , * I- . .-

Since -_, the shock strength is given by

___,__,. - 2 i'j'I'• ) ,(18)/,,,

where A (a) LI'Z - )

on linear theory

- in Chaplygin plane.

and - as given by Ref. 2 (59) is

a~ ~~~~~~~C 4. rl W ,; . ,o(,+, 4L , d

at triple point x : J@, r, is , so

strength of reflected shock vanishes at the triple point.
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CONCLUSIONS

The conical property in time-space of diffraction of

propagating plane shock is discussed. Second order solution for

pressure f has been suggested, but since this requires more informa-

tion regarding (4 , V- and the second-order boundary conditions than

is presently available, actual carrying out of the solution is not

attempted.

The strength of reflected shock, however, has been investigated;

and it is found to be generally of order . In rarticular, this

vanishes at the triple point. The immediate conclusion is that while

the strength is of second order in general, it can be at most of third

order at triple point in particular.
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APPEND IX

The Reflected-Shock Angle at the Triple Point

A slight extension of this investigation discloses

that at the triple point where the incident, reflected and

Mach shocks meet, not only is the reflected shock of vanishing

strength but also is it locally tangent to the acoustic circle.

The latter statement can be proved as follows:

Denoting by 1? the angle included between the

reflected shock and acoustic circle, then

dr (19)

where r is given by Eq. (17).

Now the mapping from the T P e plane
2

to the •, - , ÷ plane, in Lighthill's paper , is

everywhere analytic. so I 4 / and its derivatives are

finite* Even though the mapping from the physical conical

plane r t , to the 5 plane is singular on the unit

circle, the following relations hold:

Pao -- a-- - (20)

So it is immediately seen that this singular behavior will not

affect the determination of F 7 urthermorep since

we eventually get

ý = :ý #_ -a A(23.)

and the conclusion follows at once.
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